Page images
PDF
EPUB

kinds are visible at the same time. Lozeran de Fesc, in his dissertation on thunder, to which the Academy of Bordeaux awarded its prize in 1726, supposed these summer, heat, or silent lightnings to be reflected.

This silent lightning has frequently been supposed to be the reflection of distant storms below the horizon of the observer. It has been objected to this view, that a reflected light, inferior to common lightning in the same proportion that twilight bears to daylight, would be too feeble to affect the eye. But Arago summons to the aid of the first supposition the fact, that, in 1739, while Cassini and Lacaille were making experiments on the velocity of sound, a discharge of cannon near the light-house of Cette was seen where both the town and light-house were concealed by Mount St. Bauzeli. Again, in 1803, Baron Zach was flashing gunpowder on the Brocken, as a signal for longitudes. The flashes were seen on Mount Kenlenberg, 180 miles off, although the mountain itself was below the horizon. Moreover, when guns are fired at the Hotel des Invalides, in Paris, the light is seen in the gardens of Luxembourg, where no part of the first building is in view. In many cases, it is known that a storm has been raging below the horizon, betraying itself to the observer by no clouds or noise, but only by the reflected light. On the 10th of July, 1783, the town of Geneva was visited by a terrible thunder-storm. From the Hospice du Grimsel, Saussure saw the light, without any clouds or noise, in that direction. It is not so easy to dispose of those instances in which heat-lightning has played for a whole night on all sides of the horizon. Can we suppose a storm all around, while over our heads is an oasis of serenity? Moreover, Deluc mentions instances in which one flash from a visible cloud was attended by a stunning noise, and the next, though equally bright, was inaudible. May it not be, that in some cases the thunder is inaudible because the electric discharge occurs between cloud and cloud, in regions of highly rarefied air? Arago proposed to test the reflection of the light by his polariscope.

Arago says, in regard to ball-lightning, that many questions might be asked of it, in presence of which science would stand mute. From the works of Boyle, he has gleaned an accident which occurred to the ship Albemarle, near Cape Cod, in 1681. A flash of lightning was seen, and something fell upon deck which the men could not extinguish or sweep overboard. Deslandes relates, that a church was struck near Brest, and three balls of fire were seen, each three and one half feet in diameter. In 1772, such a ball was seen to oscillate in the air, and then fall. On the 7th of December, 1838, the Royal ship Rodney was struck, with a sound equal to that of a thirty-two-pounder. Two men were killed, and their clothes burnt off. Their comrades said they saw balls of fire, and ran after them to throw them overboard. In 1848, such a ball came slowly up and exploded upon the mainmast of a United States ship in the Gulf-Stream. Joseph Wasse, in Northamptonshire, thought that, in 1725, he heard the noise of the motion of one ball through the air. These balls are visible from one to ten seconds. They are said sometimes to strike the earth and rebound. Are they subjective phenomena, originating in a dazzling brilliancy of the lightning, or are they agglomerations of ponderable substances? Fusinieri states, that he has often found iron in various degrees of oxidation, and sulphur, in the powdery deposits around the fissures through which the lightning has entered. As pertinent to the statement that thunder-stones, so called, are found in the trunks of trees, Arago asks the question, whether thunder has introduced toads into the trunks of trees.

To ascertain the duration of lightning in its various phases, Arago proposes to use a wheel of a definite number of spokes, which shall be turned by clock-work. The duration will be given either by the velocity necessary to make the whole circular area appear illuminated, or by the arc illuminated with a fixed velocity. Arago credits this contrivance to Wheatstone. I will remark, in regard to the color of lightning in general, that

when the discharging clouds are near the earth, the light is white; and when they are at a great height, the light is reddish or violet.

I may premise what I have to say on the subject of thunder, by observing that sound, in general, is a vibration, sometimes originating in an aerial disturbance, and, at least, generally transmitted by the air, whatever its origin. Some physical writers have been anxious to determine the way in which the original disturbance is created. Is thunder produced in the cloud? or is it produced by the passage of the electricity from cloud to cloud, or from a cloud to the earth? There are those who lay stress upon the exceeding velocity of electricity, and imagine that, as it rushes along in the air, it leaves behind itself a vacuum into which the air dashes with a great noise, as in the bladder-glass experiment with the air-pump. Others attribute the noise of thunder to the sudden compressions and dilatations which the air undergoes. Pouillet thinks the passage of a cannon-ball through the air with the same speed would make as great a sound as that of thunder. He also suggests, whether the conduction of electricity by such a substance as the earth's atmosphere may not consist in a rapid induction from particle to particle; and whether the alternate decompositions and recompositions involved in these successive molecular inductions may not be the violence which produces the sound. If, in a single instance, the elevation of a thunder-cloud were computed by the interval between the flash and the report, and on the assumption that the sound originated in the cloud, and this calculated height compared with the true height as known in other ways, as, for example, by the position of the cloud in respect to a steeple or other object whose height was known, - it would be possible to determine at least where, if not how, the sound was made.

[ocr errors]

Aristotle says of the sound, "For thus in clouds, a separation of the pneumatic substance taking place, and falling against the density of the clouds, produces thunder.' Pliny suggests, whether thunder may not be caused by shooting-stars, hissing as hot iron does when put in water. But he wisely adds, "These things are hidden with the majesty of nature, and reserved within her cabinet." Lucretius compares thunder to the sound which accompanies the tearing of paper, silk, or parchment. He thought violent winds squeezed it out of the clouds. Descartes thought that an upper and a lower stratum rushed together, as he had sometimes seen to happen in the Alps. And we might say, with Seneca, "If clapping the hands makes such a noise, what must we hear when two clouds come together with a rush?" Peytier and Hossard observed that the thunder from clouds in which they were immersed sounded like the blaze of powder when set on fire in an open space. Richard, in his Histoire de l'Air, compares it to the sound made by the rolling of a heap of nuts upon wooden planks. But as soon as he rose above the clouds, the thunder was loud again.

Aristophanes ridicules the meteorological speculations of the ancients in the following passage from the Clouds:

"Strepsiades. But tell me, who is it that thunders? That makes me terribly afraid.

"Socrates. The clouds, as they roll along, give birth to the thunder. "Strep. How? O most audacious man!

"Soc. When they are saturated with much moisture, and are compelled to be borne along, and, full of showers, lower themselves from necessity if, in this heavy state, they dash against each other, they explode and crack. "Strep. But is it not Jupiter that compels them to be borne along?

"Soc. By no means; but the etherial vortex.

"Strep. Vortex? It certainly had escaped my notice that Jupiter had ceased to be, and that Vortex now reigned in his stead. But you have, as yet, told me nothing concerning the noise of the thunder.

ure,

"Soc. Have you not heard me say, that the clouds, when full of moistdash against each other, and resound by reason of their density? "Strep. How am I to believe this?

[ocr errors]

"Soc. I will prove it to you from your own case. Have you not, after you have been stuffed with broth at the Panathenaic festival, then felt a disturbance in your belly, and a rumbling has suddenly resounded through

it ?

"Strep. Yes, by Apollo, I have; and it has played the mischief with my inside.

"Soc. And is it not probable that the air, being boundless, should make a much more mighty thundering?

""

Every one distinguishes between a clap of thunder and the pealing sound which frequently is heard. This prolonged noise sometimes lasts from thirty-six to forty-five seconds. Captain Scoresby, near Lake Killarney, observed that the sound of a pistol-shot continued thirty seconds. In the neighborhood of Paris, where the echo is not remarkable, the report of a cannon was audible from twenty to twenty-five seconds. Many think the rolling sound of thunder sufficiently explained, when they refer it to a complicated system of echoes. It is not a fatal objection to this view that the thunder rolls also at sea, because the clouds can reflect as well as the solid mountains of the earth. The report of a cannon or pistol is repeated in a lowering sky, when it is not in clear weather. The French academicians, while making their experiments upon sound, observed that, whenever clouds were between their two stations, the signals were reverberated so as to sound like thunder. Peclet, however, argues that the rolling of thunder cannot proceed from the reflection of sound from the clouds, because at sea the report of a cannon is never repeated in that way.

Dr. Hooke, in 1706, started the explanation given in Herschel's Treatise on Sound.* He rests his theory upon the moderate velocity with which sound travels through the air. This distinction between the velocity of the luminous and acoustic radiations of bodies is thus described by Pliny, though referred to the wrong cause: "That the lightning is seen before the thunder-clap is heard, although they come indeed jointly together, it is certainly known. And no marvel, for the eye is quicker to see light than the ear to hear a sound. And yet nature doth so order the number and measure, that the stroke and the sound should accord together; . . . . neither is any man stricken who either saw the lightning before or heard the thunder-clap." Lucretius knew better why the sound comes after the flash. But the question has been raised, whether the lightning strikes before it is visible. Arago brings forward many cases of persons who were struck, and yet heard and saw nothing.

If we suppose an electric disturbance to take place, not at a single focus, but along a great length of cloud or moist air, the audible effects of this disturbance will reach the ear from the different points of its origin in successive instants; so that a sound which, at its departure, is contemporaneous in time, but diffused in space, produces an impression upon the organ of sensation, local in space, but prolonged in time. Dr. Robinson illustrates this view by a very long file of soldiers, and by the multiplied sound which would be heard by one placed in the same line beyond, if their guns were all fired together. Lardner has objected to this analogy, that in the latter case we should not have a succession of sounds, but a note of a certain pitch.

If Hooke's account of rolling thunder is adopted, it will be necessary to suppose the train over which the electric discharge runs to be three or four leagues long, in some remarkable storms. As all the peculiarities of sound, and the combination of sudden claps and rolling peals, depend on the con

* Encycl. Metr.

figuration of the clouds with respect to the point addressed by the noise, we may say, with Kaemtz, that every observer hears his own thunder as he sees his own rainbow.

It has already been stated, that silent lightning is not unfrequent. It is no less true that there is invisible thunder; that is, thunder without lightning, or even clouds. Seneca says, that it thunders sometimes without lightning. In 1751, this was frequently observed at Martinique. We must exclude from the account earthquake countries. In St. Fé de Bogota, the thunder-mass is pronounced every year. The obvious explanation of invisible thunder is, that it proceeds from clouds below the horizon. In pursuing this view, we are arrested by the fact, that thunder is never heard at any very great distance, and that clouds in which the discharge of electricity is audible, but invisible, must therefore be excessively near to the earth's surface. De l'Isle once counted thirty-two seconds between the flash and the report. Arago finds no instance recorded greater than fortynine seconds. If this method of calculation is accurate, it would appear that thunder has never been heard to a greater distance than fifteen miles. The remarkable limitation of this maximum distance is proved by other means, perhaps less exceptionable. On the 25th of January, 1757, a steeple in Cornwall was struck. The great engineer, Smeaton, who was only thirty miles distant, saw the light, but heard no noise. Muschenbroek says it thunders at the Hague when no sound is heard at Leyden or Rotterdam, which are only ten and thirteen miles off. Also, thunder at Amsterdam is not heard at Leyden, which is removed from it twenty-two miles and a half. It certainly is strange that the sound of thunder, which, in many cases, has been compared to one or two hundred pieces of artillery booming at once, should be inaudible at distances exceeding fifteen or twenty miles, especially when we consider that cannonading has been heard two hundred miles. The Emperor Kanghi * was surprised that thunder could be heard only ten leagues, when he had heard artillery thirty leagues. The distinguished meteorologist, Howard, relates that, in 1812, when a continuous stratum of mist prevailed, he could hear the carriages on the stones of London streets, when he was five miles away. The great bell of St. Paul's cathedral is heard at Windsor, over a distance of twenty-four miles.

Now, in a level country, an object can be seen at the distance of fifteen miles, if it is vertically raised as much as one hundred feet above the earth's surface. Hence we are driven to the conclusion, either that invisible thunder comes from clouds which are less than one hundred feet in elevation, or else that the electric discharge can take place in an apparently serene sky, and that it may be accompanied with a heavy report without a corresponding flash. Can there be an electric discharge from a clear and serene sky? In reply to this question, Arago has marshalled many cases related by Pliny, Suetonius, and Crescentius, in which lightning was described as flashing from a clear heaven; but nothing is said about the thunder. Anaximander believed that it might thunder from a serene sky, for he attempted to find out the cause. There is not so much difficulty when thunder, unaccompanied by lightning, is heard in the presence of clouds, for then possibly the discharge may be in higher regions of clouds, the view of which is screened from the hearer by intervening strata too dense to be penetrated by the lightning's flash. But many would prefer the alternative of supposing that thunder-clouds are sometimes less than one hundred feet above the earth's surface, to admitting that it can thunder with or without lightning from a serene blue sky; especially if, soon afterwards, clouds appear. Volney relates, that, at Pontchartrain, he heard peals of thunder, but saw no clouds, even in the horizon. But in the course of an hour, majestic hail-clouds rose into sight.

*Mem. of Miss. to China, IV.

The destruction actually caused by thunder and lightning is wholly disproportioned to the apprehensions which are felt concerning them. But fear of evil is itself a real evil, and whatever inspires confidence is the occasion of as much happiness as if it really protected and saved.

According to the calculation of chances, and in a general view of the subject, the danger that any particular individual, building, or ship will be struck by lightning within a specified time is certainly very small. But small as this liability is, it has sometimes been said that a man had three chances of being killed by lightning to every single chance which he could expect of drawing a prize in a lottery; so that whoever purchases a ticket may feel assured that he is likely to be killed three times by a thunderbolt while he is drawing one prize!

Some spots of the earth's surface, from geographical and geological peculiarities, as well as meteorological exposure, are in much less danger of being struck than elsewhere. In Lima, there is little thunder, and the sky is almost always clear. Those natives who have not travelled do not know what thunder and lightning are. Four cases only of thunder are on record since 1652, and these were considered so extraordinary that the epochs are preserved. In L. Islande there is supposed to be no thunder, and in fact, during two years, from 1833 to 1835, thunder was heard there only once. Erman states, that at Meta there are no thunder-storms in winter, and rarely in summer; while at Udskiz they are frequent and violent. He also alludes to the thunder in winter at Yerbinsk. Scoresby says there is no lightning seen at Spitzbergen. Gisecke heard thunder but once in Greenland during a residence of six years. Many navigators, among whom may be mentioned Phipps, Scoresby, Parry, and Ross, are of opinion that less thunder is heard as you approach the poles. In 1827, Parry did not hear it once. It never thunders above the parallel of 750, and rarely between those of 70° and 750. Scoresby says that lightning is seldom witnessed north of the arctic circle, and its occasional flashes are not accompanied with thunder. Thence, as you approach the tropics, the thunder-storms become more frequent. Ross and Scoresby observed that the electrometer was rarely affected in the arctic regions; and, in 1819, Parry noticed that the electrometer chain on the mast did not affect the pithballs of the instrument. In England, France, and Germany, it thunders twenty days in a year; in Rio Janeiro and l'Inde, it thunders fifty days annually. Pliny relates that it never thunders in Egypt. Plutarch makes the same statement in regard to Ethiopia. But at the present day thunder is not uncommon in Cairo and Alexandria; and as thunder occurs in the countries adjacent to Ethiopia, it may be supposed that it occurs there also. The scanty data which exist indicate that thunder is more common on land than on water. Arago thinks that at a certain distance from land it never thunders; but he allows that more facts are wanting.

Thunder-storms are more frequent in summer than in winter, though, according to Schubler, the electrical charge of the air is less intense at that season in clear and even in cloudy weather. Pliny remarks, that lightning is more common in autumn and spring than in summer or winter. But Arago infers that thunder-storms, if less frequent, are more dangerous in winter than in summer, from the following facts, compiled from Harris's papers. Out of all the ships struck by lightning between the Mediterranean and the coast of England, from 1681 to 1832, twenty-three cases belong to the first four months of the year; sixteen occurred in the last four months of the year, and only four in the other months.

It has been conjectured, that, in countries where there are mines, there are fewer thunder-storms.* But, on the contrary, no one willingly inhabits El Sitio de Tumba barreto, on account of the frequency of the lightning

* Dillwyn.

« PreviousContinue »